

Uniformity Characterization of Technics-c

By Carolyn Kooi Microlab Summer Intern 2007

Introduction

- My project
 - Uniformity
 - Goals
- Process
 - Tystar9
 - Nanospec
 - Technics-c
- Method
 - Project design
 - Needle valves
 - Measurement Matrix
- Results
 - Before Contour Graph
 - After Contour Graph
 - Photoresist Ashing
- Summary
- Acknowledgements

My Project

Uniformity is key

- →Higher yield
- Keeps process costs down
- Non-uniformity can be destructive
 - Too much etching -> damage to previous work on die
 - Too little etching→ necessary process is not completed

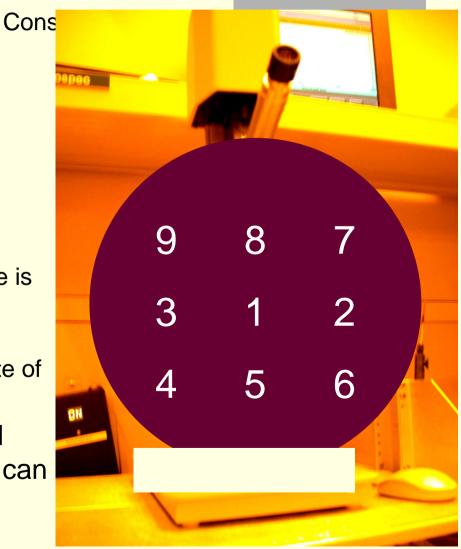
Poor Mr. Non-Uniform Wafer wishing he were broken

My Project

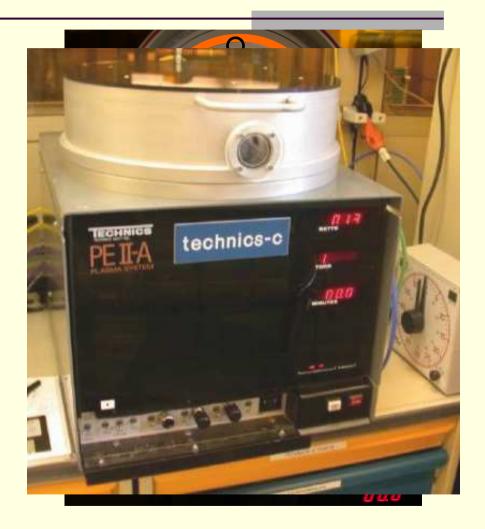
Goal

- To characterize the current uniformity in Technics-c
- To pick a combination of upper and lower gas ring flows that maximizes uniformity

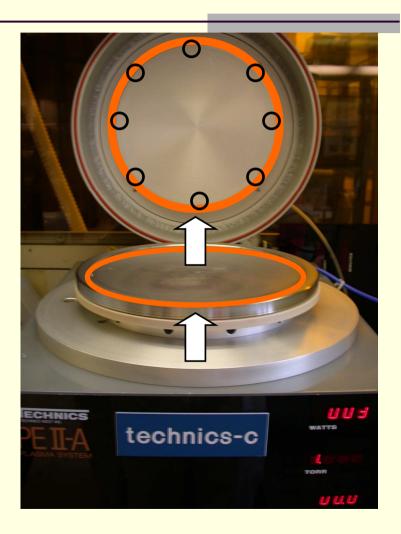
- Grow silicon nitride (Si₃N₄) on silicon wafers
- Measure preliminary thickness of nitride with Nanospec
- Etch wafers in Technics-c
- Perform nine point measurement with Nanospec
- Calculate % non-uniformity
 - Defined by us as <u>Max-Min</u> Average


Tystar 9

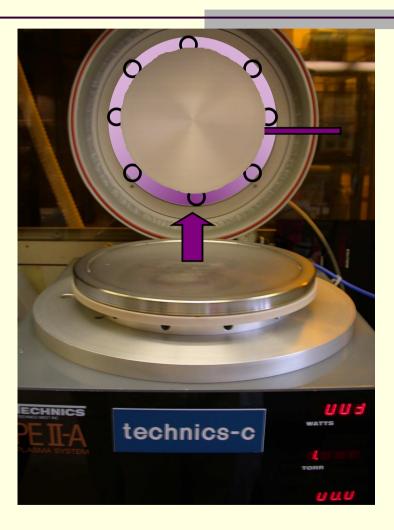
- Deposition of nitride on silicon to create silicon nitride (Si₃N₄)
- Low Pressure Chemical Vapor Deposition
 - $3SiCl_2H_2 + 4NH_3 \rightarrow$ $Si_3N_4 + 6HCI + 6H_2$


Nanospec

- Measures thickness of deposited nitride
- Nine-point measurement
- Reflectometry
 - Sends down white light
 - Constant wavelength in air, when meets the nitride, there is thin film interference
 - Depending on substance on wafer, there is a constant rate of refraction
- Based on what is intensified and what is canceled out, it can detect the thickness of the deposited layer



Technics-c


- Etches silicon nitride using SF₆ and He
- Method
 - Wafers placed on platen
 - Lid is closed and vacuum is turned on
 - Once pressure is ~40mT, SF₆ and He gas are let into the chamber

- Gas feed
 - Back of upper electrode
 - Front of lower electrode
- Gas flows into chamber between platen and metal plate then enters through holes

- Potential Problem
 - Gas distribution
 - Gas might not evenly disperse before entrance into chamber
 - Might cause nonuniform flow of gas in chamber
 - Center gas feed is optimal

Use 100W plasma

The Process of Etching

1) Dissociation

 $SF_6 + e^- \rightarrow SF_5 + F + e^-$

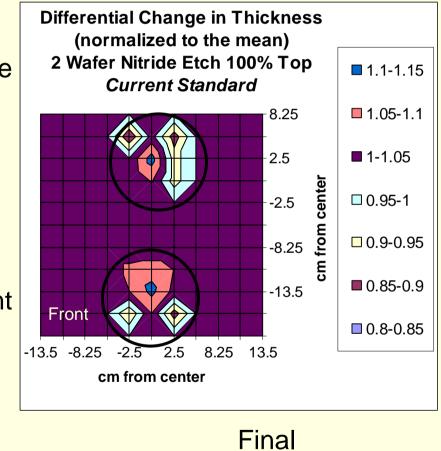
2) F and He interact with surface of wafers F He

- 3) Absorbed by nitride
- Fluorine binds to Silicon to form SiF₃ (Silicon tetraflouride)

Bombards wafer Knocks off Silicon Nitride

5) Volatile byproducts are removed with vacuum pump

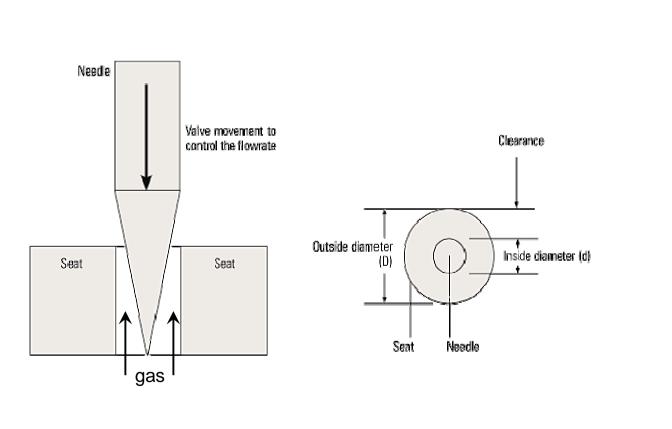
Riley, P.E.; Hanson, D.A., "Study of etch rate characteristics of SF₆/He plasmas by response-surface methodology: effects of interelectrode spacing," IEEE Transactions on semiconductor manufacturing, Vol. 2, No. 4, pg, 178-182, Nov. 1989.


My Project

- Characterization of Technics-c
 - Current Recipe for Nitride Etch
 - 100% gas on top
 - Flow rates
 - SF₆ 13.0 sccm
 - He 21.0 sccm
 - 100W
- Problem
 - When etched with current recipe wafers are not uniform

Differential Change

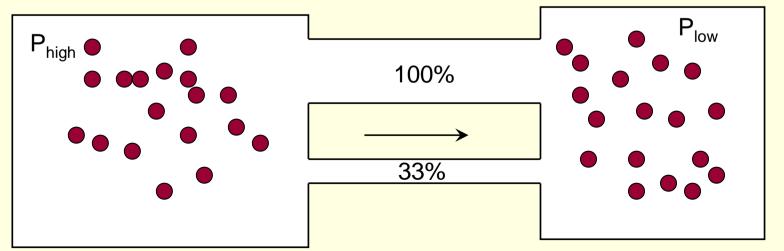
in Thickness


- % Non-uniformity
 - Front 23.6%
 - Back 27.6%

Initial

Mean

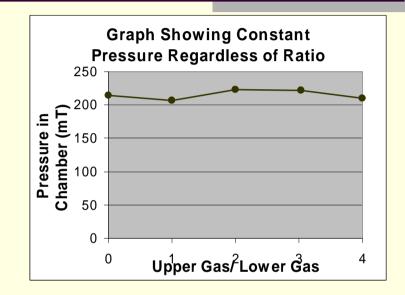
Method

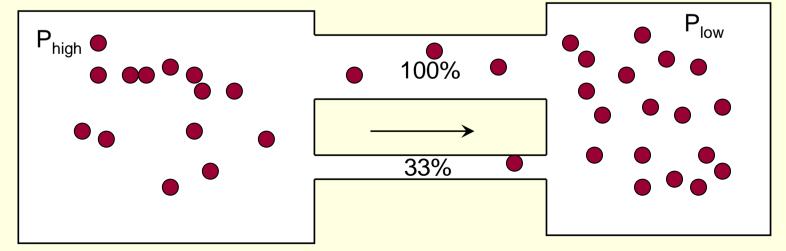


http://www.spiraxsarco.com/resources/steam-engineeringtutorials/the-boiler-house/controlling-tds-in-the-boiler-water.asp

Method

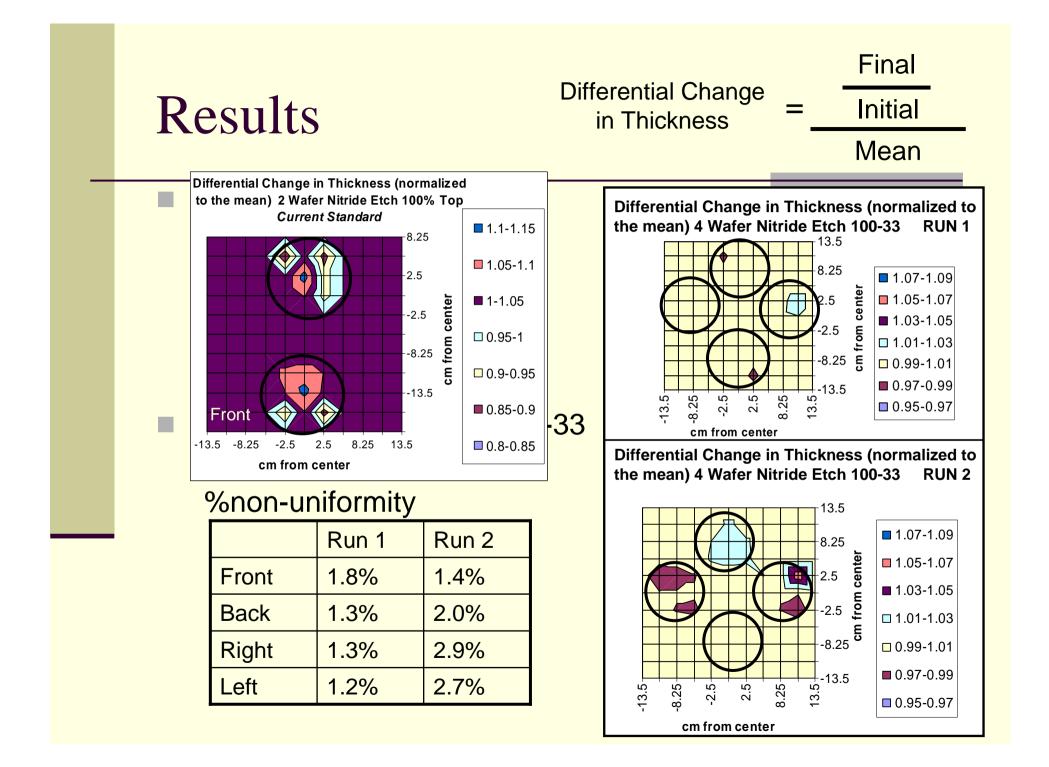
Two Needle Valves


- With micrometers we can precisely set our openings
 - 20 tick marks
 - Highest tick mark defined as 100%
- Varied ratio flow between upper and lower gas



Method

- Constant pressure differential


 constant total flow rate
- Constant total flow rate → gas is divided up by the ratio of upper to lower
 - In 100-33 division (3:1 ratio), flow rate in each tube is proportional to the ratio of the openings

Method- Non-Uniformity

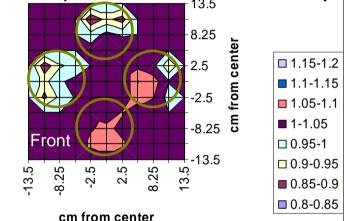
	Upper Gas									
			0	25	33	50	100			
	Lower Gas	0					F 23.58%			
							B 27.62%			
		25								
		33					F 2.54%			
							B 2.53%			
		50				F 2.04%	F 1.61%			
						B 3.66%	B 3.82%			
		100	F 33.96%				F 5.26%			
			B 47.65%				B 9.38%			

Results

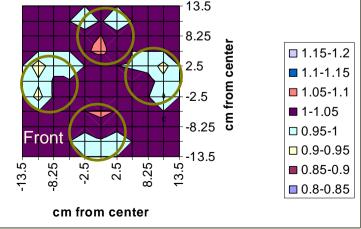
Differential Change in Thickness

Final

Initial


Mean


- Success in Nitride Etch
- Technics-c is also used for ashing and etching of Photoresist
- Tested 100 top (current recipe) and 100-33
 - O₂, 300W,1 minute
 - Percentage of nonuniformity


from 100-0 to 100-33 etch

- F 8.4% → 9.7%
- B 20.5% → 10.7%
- R 15.7% → 11.4%
- L 15.7% → 11.2%

Differential Change in Thickness (normalized to the mean) 02 Etch of Photoresist 100 top

Summary

Doct racino	<u>ia a 10</u>	<u>10/ tan</u>	4000/	1	Run 2
🚰 Microlab Wand					
*	* stdin: 13	6 lines			
chnics-c Technics VLSI plasma etch					
Andrew Carlson	acarlson	15-aug-2006		6	1.4%
Alejandro de la Fuent	e Vornbro ade		P		
Andras Kis	akis	19-oct-2005			
Zaw (Andrew) Moe	andrewm	21-jun-2007		k k	2.0%
Aaron Ohta	aohta	05-jul-2005		P	2.070
Alvaro Padilla	apadilla	21-feb-2006			
Robert Azevedo	azevedo	23-jul-2003			2.9%
Brian Kessler	bkessler	07-feb-2006		p	2.370
Michael Rosenbluth	bluth	13-feb-2006			
Anupama Bowonder	bowonder	27-apr-2006		r	2.7%
Brian Bircumshaw	brianb	04-aug-2006		р	2.170
Cheuk-Chi Lo	cclo	19-jul-2005			
Jim Cheng	chengjcm	11-aug-2006			
Choongho Yu	choongho	19-sep-2005			
Chuanhua Duan	chuanhua	06-apr-2005			
Chris Keller	ckeller	12-sep-2005			
Carolyn Kooi	ckooi	10-jul-2007			
Chenlu Hou	clhou	19-jun-2006			
Miguel Daal	daal	31-jul-2006			
David Cooke	dcooke	21-aug-2006			
Debbie Jones	dgjones	24-jun-2003			
Debbie Jones	dgjones	05-aug-2004			

Acknowledgements

Thanks to everyone at the Microlab for patiently explaining things when I had questions, letting me in when I was locked out and making this a great summer.

- Thanks to Sia Parsa, Rosemary Spivey, Marilyn Kushner, Bob Hamilton, Tony Kovats, Jay Morford, and Jimmy Chang.
- Thanks especially to Katalin Voros, for giving me this opportunity to learn all about engineering,
- to Daniel Queen, for being my mentor, showing me around the lab and helping me design and execute this project,
- and to the lab assistants who let me follow them around the lab and to lunch for the past seven weeks.