Optimization of Patterned Thin Films of Photoresist for Plasma Etching Applications

Irving Garduno Mentor: Jeffrey Clarkson Executive Director: Bill Flounders Marvell Nanofabrication Laboratory August 5, 2015



### Introduction - Photolithography



## Goals

- Improve the optical models to more accurately characterize the properties of the photoresist coatings
  - Unify the metrology equipment in the Nanolab (i.e. Nanospec and AS-IQ)



### Goals

 Investigate different photoresist stabilization processes
Scanning electron microscope inspection of patterned thin films of photoresist





Bad

Good

### Goals

• Determination of best case SiO2 to photoresist etch selectivity



## Experimental – Photoresist Film Thickness

- Replicate the lithography process on silicon wafers
- Take measurements at three distinct stages of the process:
  - -I. As Coated
  - -II. Post Development -III. Post UV Stabilization



### Experimental – Photoresist Film Thickness

• Data sheets provided by the photoresist manufacturers contain limited information

| Technical Data       | OiR 906-10   | OiR 906-12 | OiR 906-17 |
|----------------------|--------------|------------|------------|
| Solids (%) Min.      | 25.5         | 27.5       | 31         |
| Solids (%) Max.      | 27.5         | 29.5       | 33         |
| Viscosity (cst) Min. | 9            | 14         | 26.7       |
| Viscosity (cst) Max  | 15           | 20         | 32.7       |
| Water Content        | <0.5%        |            |            |
| Filtration           | 0.2 micron ( | absolute)  |            |
| Refractive Index     | 1.67         |            |            |
| Flash Point          | 53°C (closed | d cup)     |            |
| Trace Metals         | None > 30 p  | pb         |            |

### Analysis– Photoresist Film Thickness



Thickness Loss Chart (Starting Thickness Target 0.42 um)

4.2.1 – DUV UV210-0.6 (0.42 um)

### Results – Photoresist Film Thickness

#### **Index of Refraction of Photoresist Films During Photolithography**

| Process Specification              | Index of<br>Refraction | Cauchy Coefficients<br>(n1,n2,n3) | As Coated<br>Index | Post-Development<br>Index | Post-UV Stabilization<br>Index |
|------------------------------------|------------------------|-----------------------------------|--------------------|---------------------------|--------------------------------|
| 4.2.1-DUV UV-210-0.6<br>(0.42um)   | 1.532                  | 1.532, 8.97E5, 3.00E10            | n = 1.56           | n = 1.56                  | n = 1.60                       |
| 4.2.2-DUV UV-210-0.6<br>(0.9um)    | 1.532                  | 1.532, 8.97E5, 3.00E10            | n = 1.56           | n = 1.56                  | n = 1.6C                       |
| 4.3.1 i-line OiR906-12<br>(1.2um)  | 1.67                   | None<br>Provided                  | n = 1.6C           | n = 1.59                  | n = 1.69                       |
| 4.3.2 i-line OiR906-12<br>(2.8 um) | 1.67                   | None<br>Provided                  | n = 1.6C           | n = 1.6C                  | n = 1.69                       |
| 4.4.1 g-line OCG 825<br>(1.3um)    | 1.64                   | None<br>Provided                  | n = 1.6C           | n = 1.62                  | n = 1.658                      |

### Results – Photoresist Film Thickness



As Coated

| Process Specification             | Nanospec<br>Program #10<br>(n = 1.6C)<br>Error | Optomized<br>Nanospec<br>Program<br>Error |
|-----------------------------------|------------------------------------------------|-------------------------------------------|
| 4.2.1 - DUV UV210-0.6 (0.42 um)   | 3.49%                                          | 0.96%                                     |
| 4.2.2 - DUV UV210-0.6 (0.9 um)    | 4.52%                                          | 0.07%                                     |
| 4.3.1 - i-line OiR906-12 (1.2 um) | 0.95%                                          | 0.88%                                     |
| 4.3.2 - i-line OiR906-12 (2.8 um) | 1.48%                                          | 1.43%                                     |
| 4.4.1 - g-line OCG 825 (1.3 um)   | 0.73%                                          | 0.73%                                     |

#### **Post Stabilization**

| Process Specification             | Nanospec<br>Program #10<br>(n = 1.6C)<br>Error | Optomized<br>Nanospec<br>Program<br>Error |
|-----------------------------------|------------------------------------------------|-------------------------------------------|
| 4.2.1 - DUV UV210-0.6 (0.42 um)   | 2.70%                                          | 1.57%                                     |
| 4.2.2 - DUV UV210-0.6 (0.9 um)    | 1.70%                                          | 0.43%                                     |
| 4.3.1 - i-line OiR906-12 (1.2 um) | 2.48%                                          | 0.90%                                     |
| 4.3.2 - i-line OiR906-12 (2.8 um) | -                                              | -                                         |
| 4.4.1 - g-line OCG 825 (1.3 um)   | 1.66%                                          | 0.20%                                     |

#### **Post Development**

| Process Specification             | Nanospec<br>Program #10<br>(n = 1.6C)<br>Error | Optomized<br>Nanospec<br>Program<br>Error |
|-----------------------------------|------------------------------------------------|-------------------------------------------|
| 4.2.1 - DUV UV210-0.6 (0.42 um)   | 4.02%                                          | 0.57%                                     |
| 4.2.2 - DUV UV210-0.6 (0.9 um)    | 4.25%                                          | 0.39%                                     |
| 4.3.1 - i-line OiR906-12 (1.2 um) | 0.40%                                          | 0.27%                                     |
| 4.3.2 - i-line OiR906-12 (2.8 um) | 0.16%                                          | 0.10%                                     |
| 4.4.1 - g-line OCG 825 (1.3 um)   | 0.73%                                          | 0.09%                                     |



## Experimental – Photoresist Stabilization



|         | Program U | Program J | Hard Bake |
|---------|-----------|-----------|-----------|
| Axcelis | ✓         | •         |           |
| Uvbake  | ✓         | ✓         |           |
| Oven    |           |           | •         |

| Program U                                                                                                                                | Program J                                                                                                                                   | Hard Bake         |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 0-10 sec: lamp off,<br>110 C 10-20 sec:<br>lamp low, 110 C<br>20-40 sec: lamp<br>low, ramp 110 to<br>140 C 40-70 sec:<br>lamp low, 140 C | 0-10 sec: lamp off,<br>110 C 10-20 sec:<br>lamp low, 110 C<br>20-90 sec: lamp<br>high, ramp 110 to<br>230 C 90-100 sec:<br>lamp high, 230 C | 120 C for 30 min. |

### Analysis – Photoresist Stabilization

#### 4.2.1 - DUV UV210-0.6 (0.42 um)

#### Axcelis Program U



#### Uvbake Program U



#### Axcelis Program J



#### Uvbake Program J



#### Oven Hard Bake



## Analysis – Photoresist Stabilization

#### 4.2.2 - DUV UV210-0.6 (0.90 um)

Axcelis Program U Axcelis Program J

Date :23 Jul 2015

UC Berkeley NanoLab



#### Uvbake Program U



#### Uvbake Program J

Avg. Sidewall  $= 82.0^{\circ}$ 

EHT = 1.50 kV Pixel Size = 1.625 nm Mag = 229.07 K X

Width = 1.664 µm

WD = 5.4 mm Dwell Time = 100 ns



#### Oven Hard Bake



#### **Photoresist Line Profile**

#### Photoresist Sidewall Angle from Various Stabilization Treatments -Target Linewidth = 700 nm



The oven hard bake resulted in the steepest sidewalls. UV stabilization program J resulted in the most tapered sidewalls. The thin DUV resist was most susceptible to tapered sidewalls.

### Photoresist Line Profile

#### Estimated Reduction in Photoresist Thickness from Various Stabilization Treatments



The oven hard bake resulted in the least change in film thickness. UV stabilization program J resulted in the most change in film thickness.

### Experimental – Photoresist Etch



#### SiO2 to Photoresist Selectivity

SiO2 to Photoresist Selectivity of Centura MXP OXSP-VAR-EP SiO2 Etch for Various Photoresists and Stabilization Treatments



Photoresist Stabilization Treatment

### Conclusion

- Optimized programs have been generated for the Nanospec which result in a reduction of worst case measurement error from 4.5% to 1.6%
- The oven hard bake results in the steepest photoresist sidewall angle while program J on Axcelis and Uvbake result in the least desirable sidewall profile
- The use of DUV resist with the oven hard bake gave the best etch selectivity

## Acknowledgements

- Bill Flounders
- Jeffrey Clarkson
- Kim Chan
- Greg Mullins
- Francesca Calderon
- Lea Marlor
- Fanny Li
- James Hake

# Berkeley UNIVERSITY OF CALIFORNIA







### Works Cited

- [1] "General Metrology." *Toho Technology*. N.p., 05 Sept. 2015. Web. 03 Aug. 2015.
- [2] "Profilometer Uses." *Sterling Precision Tool Works*. N.p., 01 May 2013. Web. 03 Aug. 2015.
- [3] "Semiconductor Lithography." *The Basics of Microlithography*. N.p., 23 Nov. 2006. Web. 03 Aug. 2015.
- [4] "Product Information." *Journal (American Water Works Association)*77.12, Filtration (1985): 114-16. Web. 03 Aug. 2015.
- [6] "Confused Smiley Face Gif For Webmasters." *Page 2 For Query Confused Smiley Face Gif.* N.p., n.d. Web. 03 Aug. 2015.

## Comments or Questions?





#### **Summary of Process Specifications**

| Process Specification             | Prime                                                                       | Coat                                                                                              | Exposure                                                                     | Development                                                                                                                     | UV Stabilization/ Hard Bake                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 4.2.1 - DUV UV210-0.6 (0.42 um)   | primeoven recipe #2<br>Pump to 1.3 torr,<br>HMDS vapor at 90 C<br>for 2 min | svgcoat6 (9,1,1)<br>no prime,<br>7000 rpm for 30 sec.,<br>130 C proximity<br>softbake for 60 sec. | asml300<br>Job: CMOS200<br>19 mJ/cm2<br>focus offset: 0.0 um<br>no alignment | svgdev6 (1,1,9)<br>contact post exposure bake at 130 C<br>for 60 sec, puddle develop in MF-<br>26A for 60 sec.,<br>no hard bake | Axcelis Program U and J,<br>UVbake Program U and J,<br>box oven harbake<br>at 120 C for 30 min. |
| 4.2.2 - DUV UV210-0.6 (0.90 um)   | primeoven recipe #2<br>Pump to 1.3 torr,<br>HMDS vapor at 90 C<br>for 2 min | svgcoat6 (9,2,1)<br>no prime,<br>1480 rpm for 30 sec.,<br>130 C proximity<br>softbake for 60 sec. | asml300<br>Job: CMOS200<br>18 mJ/cm2<br>focus offset: 0.0 um<br>no alignment | svgdev6 (1,1,9)<br>contact post exposure bake at 130 C<br>for 60 sec, puddle develop in MF-<br>26A for 60 sec.,<br>no hard bake | Axcelis Program U and J,<br>UVbake Program U and J,<br>box oven harbake<br>at 120 C for 30 min. |
| 4.3.1 - i-line OiR906-12 (1.2 um) | primeoven recipe #2<br>Pump to 1.3 torr,<br>HMDS vapor at 90 C<br>for 2 min | svgcoat1 (1,1)<br>4100 rpm for 30 sec.,<br>90 C contact softbake<br>for 60 sec.                   | gcaws6<br>Job: 15x15MM<br>1.2 sec.<br>focus offset: 0.0 um<br>no alignment   | svgdev1 (1,1)<br>contact post exposure bake at 120 C<br>for 60 sec, puddle develop in OPD<br>4262 for 60 sec.                   | Axcelis Program U and J,<br>UVbake Program U and J,<br>box oven harbake<br>at 120 C for 30 min. |
| 4.3.2 - i-line OiR906-12 (2.8 um) | primeoven recipe #2<br>Pump to 1.3 torr,<br>HMDS vapor at 90 C<br>for 2 min | svgcoat1 (6,4)<br>820 rpm for 30 sec.,<br>90 C proximity<br>softbake for 100 sec.                 | gcaws6<br>Job: 15x15MM<br>3.5 sec.<br>focus offset: 0.0 um<br>no alignment   | svgdev1 (1,1)<br>contact post exposure bake at 120 C<br>for 60 sec, puddle develop in OPD<br>4262 for 60 sec.                   | Axcelis Program U and J,<br>UVbake Program U and J,<br>box oven harbake<br>at 120 C for 30 min. |
| 4.4.1 - g-line OCG 825 (1.3 um)   | primeoven recipe #2<br>Pump to 1.3 torr,<br>HMDS vapor at 90 C<br>for 2 min | svgcoat1 (2,1)<br>Coat at 5000 rpm for<br>30 sec., 90 C<br>proximity softbake<br>for 60 sec.      | gcaws6<br>Job: 15x15MM<br>1.2 sec.<br>focus offset: 0.0 um<br>no alignment   | svgdev1 (1,2)<br>contact post exposure bake at 120 C<br>for 60 sec, puddle develop in OCG<br>934 3:2 for 60 sec.                | Axcelis Program U and J,<br>UVbake Program U and J,<br>box oven harbake<br>at 120 C for 30 min. |