SiC on Oxford PECVD 4

Intern: Julia Schwartz Engineer: Richelieu Hemphill Executive Director: Bill Flounders Marvell Nanofabrication Labs, UC Berkeley

Sic

Often used as an abrasive

 Car Brakes, Bullet Proof Vests

 used in semiconductor electronics devices that operate at high

temperatures or high voltages

• Solar panels, electronics used in space

- Has an index of about 2.64
- Semiconductor

- How is it normally made?
 - 800C
 - In Tystar 15

PECVD

 process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. を、日

Chemical Reaction

CH4 + SiH4 → SiC + 4H2

How does it work?

- RFuses AC power (switches between plus and minus)
 Create a Plasma
- Flows gas
- Pressure inside chamber
- Heated plate

Original recipe \odot 30 min deposition time (reasonable time) ⊙350 degrees Celsius (Good Crack) \odot 300mT pressure(Low to High) \odot 50 W of power (Low to high) \odot 30 sccm of CH4(Higher activation energy) ⊙7.5 sccm of SiH4

Measurements

⊙Thickness

SEM, ellipse

• Refractive Index

Ellipse, Nanoduv

Why (refractive)index? Refractive index is a measure of bond quality. Higher index is good. It means a more crystalline structure. **Amorphous: 1.8** Polycrystalline: 1.9-2.5

⊙Etch test

Msink 7

Measurements

Ŗ

Measurements

OType of bonds FTIR

⊙Sheet resistance

ResMap

* process

Why change what we did?

(pressure of CH4)(velocity of **Dep rate=** CH4/SiH4) (reaction x-section) (e^(-activation energy/k*Temperature))

This equation came from plugging manipulated ideal gas law into the thermal equilibrium equation

(pressure of SiH4)

Temperature 1

Affect of Tempeture(c) on Refractive Index

Temperature had little affect on index, thickness, or uniformity.

::

Wafers were very nonuniform making them hard to measure on the ellipsometer.

Preasure w

Affect of Pressure (mT) on Refractive Index

Pressure had a small affect on index, but no effect on uniformity

Power *

Effects of Power and Pressure on Index					
	Power(W)				
Preasure(mT)		50W	100W	150W	
	300	1.92	1.97	2.08	
	600	2.1	2.13	2.16	

An increase in power does increase index. When we increase the power to 250W we also saw a large increase in uniformity.

Ratio and amount of SiH4 and CH4 🔆

Effects of amount and ratio of gases on Index						
	Ratio of gas					
Amount of gas		1/4	1/5	1/7	1/8	1/10
	5 sccm of SiH4		2.1	2.12		2.14
	7.5 sccm of SiH4	2.23	2.12	2.25	2.25	

Stress

Effects of amount and ratio of gases on Stress (MPa)						
	Ratio of gas					
Amount of gas		1/4	1/5	1/7	1/8	1/10
	5 sccm of SiH4		-586	-486		intensity below check limit
	7.5 sccm of SiH4	Wafer broken before properly measured	-371.4	-603.6	-421.1	

Etch Test

The etch test was run with a 1:10 ratio of HF to water each piece was left in the solution for a minute and then cleaned and measured

The was a general trend of the SiC not etching

	Before	After
20	3054	3107
21	2740	3216
22	3275	2896
23	3532	2673
24	3279	3183
25	3321	3332

FTIR

Final Recipe

 $\odot 30$ min deposition time **⊙350** degrees Celsius ⊙1400mT pressure \odot 250 W of power ⊙60 sccm of CH4 ⊙7.5 sccm of SiH4

Index: Before 1.93, After 2.252 Thickness: Before 5285, After 3197 Uniformity:Before 28.7%, After 2.2% Stress: Before -337.6, After -421.1 Etch: Didn't etch Resmap: Didn't Conduct

Changes in Results *©*

Further Research Questions/Ideas

⊙More research on the effects of changing the ratios and amount of gases

⊙The association of color with index and/or thickness

Thank you to everyone who has helped me these last few weeks!!!!!!!!!